Hypergeometric generating functions for values of Dirichlet and other L functions.

نویسندگان

  • Jeremy Lovejoy
  • Ken Ono
چکیده

Although there is vast literature on the values of L functions at nonpositive integers, the recent appearance of some of these values as the coefficients of specializations of knot invariants comes as a surprise. Using work of G. E. Andrews [(1981) Adv. Math. 41, 173-185; (1986) q-Series: Their Development and Application in Analysis, Combinatories, Physics, and Computer Algebra, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics 66 (Am. Math. Soc, Providence, RI); (1975) Problems and Prospects for Basic Hypergeometric Series: The Theory and Application of Special Functions (Academic, New York); and (1992) Illinois J. Math. 36, 251-274], we revisit this old subject and provide uniform and general results giving such generating functions as specializations of basic hypergeometric functions. For example, we obtain such generating functions for all nontrivial Dirichlet L functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dirichlet L-functions, Elliptic Curves, Hypergeometric Functions, and Rational Approximation with Partial Sums of Power Series

We consider the Diophantine approximation of exponential generating functions at rational arguments by their partial sums and by convergents of their (simple) continued fractions. We establish quantitative results showing that these two sets of approximations coincide very seldom. Moreover, we offer many conjectures about the frequency of their coalescence. In particular, we consider exponentia...

متن کامل

A Subclass of Analytic Functions Associated with Hypergeometric Functions

In the present paper, we have established sufficient conditions for Gaus-sian hypergeometric functions to be in certain subclass of analytic univalent functions in the unit disc $mathcal{U}$. Furthermore, we investigate several mapping properties of Hohlov linear operator for this subclass and also examined an integral operator acting on hypergeometric functions.

متن کامل

Integral Properties of Zonal Spherical Functions, Hypergeometric Functions and Invariant

Some integral properties of zonal spherical functions, hypergeometric functions and invariant polynomials are studied for real normed division algebras.

متن کامل

Ramanujan Series Upside-down

We prove that there is a correspondence between Ramanujan-type formulas for 1/π and formulas for Dirichlet L-values. Our method also allows us to reduce certain values of the Epstein zeta function to rapidly converging hypergeometric functions. The Epstein zeta functions were previously studied by Glasser and Zucker.

متن کامل

On meromorphically multivalent functions defined by multiplier transformation

The purpose of this paper is to derive various useful subordination properties and characteristics for certain subclass of multivalent meromorphic functions, which are defined here by the multiplier transformation. Also, we obtained inclusion relationship for this subclass.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 12  شماره 

صفحات  -

تاریخ انتشار 2003